МП является основным узлом системы и выполняет следующие функции. 1) Выполняет арифметическую и и логическую обработку данных. 2) Организует обмен данными м/у внутренними и внешними регистрами. Внутренние – Р.О.Н. Внешние – ячейки памяти, или порты ввода-вывода. 3) Формирует необходимую последовательность внутренних и внешних сигналов для управления всеми компонентами микропроцессорной системы. 4) Идентифицирует внешние входные сигналы (Запросы прерываний и запросы прямого доступа к памяти [ПДП]), и организует обработку этих сигналов.
Обобщенная структура ЦП
Основным узлом является АЛУ. Комбинационная схема не имеет функций хранения. Возникает необходимость хранения двух операндов. Для этой цели используются регистры.
БША – буферная шина адреса. БШД – внутренняя шина данных. ВША – внутренняя шина адреса. А – аккумулятор (хранение операнда, хранение результата операции между регистрами обмена). По умолчанию результат операции идет в аккумулятор. БР – буферный регистор, программно недоступный (сюда помещают сам микропроцессор) add B add AL,BH. СК – счетчик адреса команды – используется для хранения адреса команды, подлежащая выполнению. РК – регистр команд, хранит код операции текущей выполняемой команды. УУ – устройство управления – микропрограммный аппарат, который генерирует последовательность внутренних и внешних сигналов, которые необходимы для выполнения команды (работает по жесткой логике)
Add B A+B->A
Регистровая память:
- РОН для хранения промежуточных операций, часть используется по умолчанию как указатель памяти.
- УС указатель стека, хранит вершину стека
- РВХ регистры временного хранения, программно не доступны.
ШИНА УПРАВЛЕНИЯ.
В ШУ входят сигналы записи, чтения, записи внешних устройств, сигналы прерывания, ПДП и синхронизации. При работе с памятью и внешними устройствами возможны два способа обращения к внешним устройствам: с помощью команд IN и OUT(раздельное обращение к памяти и внешним устройствам), с помощью команд чтение и запись памяти. В первом случае операционные возможности обработки входных данных уменьшаются, так как весь обмен информацией выполняется через аккумулятор и несколько упрощается дешифрация адреса, но требуется четыре сигнала управления: , , , . А во втором случае приемником или передатчиком информации может быть любой регистр МП и достаточно двух сигналов и . Формирование этих сигналов зависит от особенностей МП. Для К580 сигналы записи/чтения формируются в системном контроллере К580ВК28, на вход которого поступает информация с байта состояния и сигналы чтение/запись МП. В МП 1821 требуется внешняя схема формирования сигнала с помощью дешифратора (это наиболее простой способ). Если обращение идет как к ячейке памяти, то достаточно сделать следующее: Приведенные схемы используются в тех случаях, когда нет режима ПДП. При наличии ПДП они должны быть с тремя состояниями или открытым коллектором. В качестве сигналов синхронизации обычно используются входы кварцевого генератора с частотой МП, усиленной по мощности, либо сигналы синхронизации, формируемые в МП. Для К580 - сигнал F2T. Для задания требуемой частоты МП, кварц на входы генератора ГФ24 должен иметь собственную частоту в 9 раз больше, чем требуемая (9:1). Для 1821 соотношение 2:1. В качестве сигнала синхронизации используют выход SINC.
Организация прямого доступа к памяти
Одним из способов обмена данными с ВУ является обмен в режиме прямого доступа к памяти (ПДП). В этом режиме обмен данными между ВУ и основной памятью микроЭВМ происходит без участия процессора. Обменом в режиме ПДП управляет не программа, выполняемая процессором, а электронные схемы, внешние по отношению к процессору. Обычно схемы, управляющие обменом в режиме ПДП, размещаются в специальном контроллере, который называется контроллером прямого доступа к памяти.
Обмен данными в режиме ПДП позволяет использовать в микроЭВМ быстродействующие внешние запоминающие устройства, такие, например, как накопители на жестких магнитных дисках, поскольку ПДП может обеспечить время обмена одним байтом данных между памятью и ВЗУ, равное циклу обращения к памяти.
Для реализации режима прямого доступа к памяти необходимо обеспечить непосредственную связь контроллера ПДП и памяти микроЭВМ. Для этой цели можно было бы использовать специально выделенные шины адреса и данных, связывающие контроллер ПДП с основной памятью. Но такое решение нельзя признать оптимальным, так как это приведет к значительному усложнению микроЭВМ в целом, особенно при подключении нескольких ВЗУ. В целях сокращения количества линий в шинах микроЭВМ контроллер ПДП подключается к памяти посредством шин адреса и данных системного интерфейса. При этом возникает проблема совместного использования шин системного интерфейса процессором и контроллером ПДП. Можно выделить два основных способа ее решения: реализация обмена в режиме ПДП с "захватом цикла" и в режиме ПДП с блокировкой процессора.
Существуют две разновидности прямого доступа к памяти с "захватом цикла". Наиболее простой способ организации ПДП состоит в том, что для обмена используются те машинные циклы процессора, в которых он не обменивается данными с памятью. В такие циклы контроллер ПДП может обмениваться данными с памятью, не мешая работе процессора. Однако возникает необходимость выделения таких циклов, чтобы не произошло временного перекрытия обмена ПДП с операциями обмена, инициируемыми процессором. В некоторых процессорах формируется специальный управляющий сигнал, указывающий циклы, в которых процессор не обращается к системному интерфейсу. При использовании других процессоров для выделения таких циклов необходимо применение в контроллерах ПДП специальных селектирующих схем, что усложняет их конструкцию. Применение рассмотренного способа организации ПДП не снижает производительности микроЭВМ, но при этом обмен в режиме ПДП возможен только в случайные моменты времени одиночными байтами или словами.
Более распространенным является ПДП с "захватом цикла" и принудительным отключением процессора от шин системного интерфейса. Для реализации такого режима ПДП системный интерфейс микроЭВМ дополняется двумя линиями для передачи управляющих сигналов "Требование прямого доступа к памяти" (ТПДП) и "Предоставление прямого доступа к памяти" (ППДП).
Управляющий сигнал ТПДП формируется контроллером прямого доступа к памяти. Процессор, получив этот сигнал, приостанавливает выполнение очередной команды, не дожидаясь ее завершения, выдает на системный интерфейс управляющий сигнал ППДП и отключается от шин системного интерфейса. С этого момента все шины системного интерфейса управляются контроллером ПДП. Контроллер ПДП, используя шины системного интерфейса, осуществляет обмен одним байтом или словом данных с памятью микроЭВМ и затем, сняв сигнал ТПДП, возвращает управление системным интерфейсом процессору. Как только контроллер ПДП будет готов к обмену следующим байтом, он вновь "захватывает" цикл процессора и т.д. В промежутках между сигналами ТПДП процессор продолжает выполнять команды программы. Тем самым выполнение программы замедляется, но в меньшей степени, чем при обмене в режиме прерываний.
Применение в микроЭВМ обмена данными с ВУ в режиме ПДП всегда требует предварительной подготовки, а именно: для каждого ВУ необходимо выделить область памяти, используемую при обмене, и указать ее размер, т.е. количество записываемых в память или читаемых из памяти байт (слов) информации. Следовательно, контроллер ПДП должен обязательно иметь в своем составе регистр адреса и счетчик байт (слов). Перед началом обмена с ВУ в режиме ПДП процессор должен выполнить программу загрузки. Эта программа обеспечивает запись в указанные регистры контроллера ПДП начального адреса выделенной ВУ памяти и ее размера в байтах или словах в зависимости от того, какими порциями информации ведется обмен. Сказанное не относится к начальной загрузке программ в память в режиме ПДП. В этом случае содержимое регистра адреса и счетчика байт слов устанавливается переключателями или перемычками непосредственно на плате контроллера.
Блок-схема простого контроллера ПДП, обеспечивающего ввод данных в память микроЭВМ по инициативе ВУ в режиме ПДП "Захват цикла", приведена на рис. 3.17.
Рис. 3.17. Контроллер ПДП для ввода данных из ВУ в режиме "Захват цикла" и отключением процессора от шин системного интерфейса
Перед началом очередного сеанса ввода данных из ВУ процессор загружает в регистры его контроллера следующую информацию: в счетчик байт - количество принимаемых байт данных, а в регистр адреса - начальный адрес области памяти для вводимых данных. Тем самым контроллер подготавливается к выполнению операции ввода данных из ВУ в память микроЭВМ в режиме ПДП.
Байты данных из ВУ поступают в регистр данных контроллера в постоянном темпе. При этом каждый байт сопровождается управляющим сигналом из ВУ "Ввод данных", который обеспечивает запись байта данных в регистр данных контроллера. По этому же сигналу и при ненулевом состоянии счетчика байт контроллер формирует сигнал ТПДП. По ответному сигналу процессора ППДП контроллер выставляет на шины адреса и данных системного интерфейса содержимое своих регистров адреса и данных соответственно. Формируя управляющий сигнал "Вывод", контроллер ПДП обеспечивает запись байта данных из своего регистра данных в память микроЭВМ. Сигнал ППДП используется в контроллере и для модификации счетчика байт и регистра адреса. По каждому сигналу ППДП из содержимого счетчика байт вычитается единица, и как только содержимое счетчика станет равно нулю, контроллер прекратит формирование сигналов "Требование прямого доступа к памяти".
На примере простого контроллера ПДП мы рассмотрели только процесс подготовки контроллера и непосредственно передачу данных в режиме ПДП. На практике любой сеанс обмена данными с ВУ в режиме ПДП всегда инициируется программой, выполняемой процессором, и включает два следующих этапа.
1. На этапе подготовки ВУ к очередному сеансу обмена процессор в режиме программно-управляемого обмена опрашивает состояние ВУ (проверяет его готовность к обмену) и посылает в ВУ команды, обеспечивающие подготовку ВУ к обмену. Такая подготовка может сводиться, например, к перемещению головок на требуемую дорожку в накопителе на жестком диске. Затем выполняется загрузка регистров контроллера ПДП. На этом подготовка к обмену в режиме ПДП завершается и процессор переключается на выполнение другой программы.
2. Обмен данными в режиме ПДП начинается после завершения подготовительных операций в ВУ по инициативе либо ВУ, как это было рассмотрено выше, либо процессора. В этом случае контроллер ПДП необходимо дополнить регистром состояния и управления, содержимое которого будет определять режим работы контроллера ПДП. Один из разрядов этого регистра будет инициировать обмен данными с ВУ. Загрузка информации в регистр состояния и управления контроллера ПДП производится программным путем.
Наиболее распространенным является обмен в режиме прямого доступ к памяти с блокировкой процессора. Он отличается от ПДП с "захватом цикла" тем, что управление системным интерфейсом передается контроллеру ПДП не на время обмена одним байтом, а на время обмена блоком данных. Такой режим ПДП используется в тех случаях, когда время обмена одним байтом с ВУ сопоставимо с циклом системной шины.
В микроЭВМ можно использовать несколько ВУ, работающих в режиме ПДП. Предоставление таким ВУ шин системного интерфейса для обмена данными производится на приоритетной основе. Приоритеты ВУ реализуются так же, как и при обмене данными в режиме прерывания, но вместо управляющих сигналов "Требование прерывания" и "Предоставление прерывания" (рис. 18 Организация прерываний в микроЭВМ) используются сигналы "Требование прямого доступа" и "Предоставление прямого доступа", соответственно.
0 коммент.:
Отправить комментарий